Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 918: 170767, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38331293

RESUMO

Rapid prediction of the removal efficiency and energy consumption of organic contaminants under various operating conditions is crucial for advanced oxidation processes (AOPs) in industrial application. In this study, 1H-Benzotriazole (BTZ, CAS: 95-14-7) is selected as a model micropollutant, a validated incorporated Computational Fluid Dynamics (CFD) model is employed to comprehensively investigate the impacts of initial concentrations of H2O2, BTZ and dissolved organic carbon (DOC) (i.e., [DOC]0, [BTZ]0 and [DOC]0), as well as the effective UV lamp power P and volumetric flow rate Qv. Generally, the operation performance depends on [DOC]0 and [BTZ]0 in similar trends, but with quantitatively different ways. The increase in [H2O2]0 and P/Qv can promote •OH generation, leading to the elimination of BTZ. It is worth noting that P/Qv is found to be linearly correlated with the removal order of BTZ (ROBTZ) under specific conditions. Based on this finding, the degradation of other potential organic contaminants with a wide range of rate constants by UV/H2O2 is further investigated. A model for predicting energy consumption for target removal rates of organic pollutants is established from massive simulation data for the first time. Additionally, a handy Matlab app is first developed for convenient application in water treatment. This work proposes a new operable solution for fast predicting operation performance and energy consumption for the removal of organic contaminants in industrial applications of advanced oxidation processes.

2.
Huan Jing Ke Xue ; 44(11): 6015-6024, 2023 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-37973086

RESUMO

To investigate the pollution characteristics and formation mechanism of ambient air ozone(O3) in a typical tropical seaside city, we conducted an observational experiment on O3 and its precursors at an urban site in Haikou, Hainan Province, from June to October 2019. The O3 pollution characteristics were analyzed comprehensively; the O3-NOx-VOCs sensitivities and key precursors were determined, and the control strategies for O3 pollution were carried out. The results were as follows:1 O3 pollution in Haikou mainly occurred in September and October, with daily maximum 8-h O3 concentrations in the range of 39-190 µg·m-3, and the daily variation in O3 was unimodal, peaking at approximately 14:00. 2 The concentrations of NO2 and VOCs were higher during O3 pollution episodes than their respective mean values in Haikou City. The increased O3 precursor concentrations were an important factor leading to O3 pollution, whereas O3 pollution was also influenced by regional transport, with pollutants mainly transported from the northeastern part of Haikou City. 3 O3-NOx-VOCs sensitivity in Haikou City was in the VOCs and NOx transitional regime, and the most sensitive precursors in various months were different. O3 formation in September was sensitive to anthropogenic VOCs the most; however, in October it was sensitive to NOx. 4 In the future, the reduction ratio of VOCs to NOx should be 1:1-4:1 to control O3 pollution effectively in Haikou.

3.
J Hazard Mater ; 459: 132245, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37562354

RESUMO

Benzotriazole UV stabilizers (BT-UVs) are important UV absorbers. As high-production chemicals and potential hazards, their ubiquitous presence in aquatic environments is of greatly pressing concern. Herein, the removal of six typical BT-UVs by UV/H2O2 was comprehensively investigated by quantum chemistry calculation integrated with CFD simulation. Utilizing such a micro and macro incorporated model in treating contaminants is the first report. From the micro-view, degradation mechanisms of BT-UVs by •OH oxidation were determined, and corresponding rate constants were obtained with values of 109∼1010 M-1s-1. In a macroscopic aspect, combining the established kinetic model and CFD simulation, the effects of UV lamp power (P), volumetric flow rate (Qv), and H2O2 dosage ([H2O2]0) on removal yields of BT-UVs were expounded, increasing P or [H2O2]0 or decreasing Qv are effective in improving removal yields of BT-UVs, but the enhancement was abated when P or [H2O2]0 increased to a certain level. When [H2O2]0 is 5 mg/L and Qv is decreased from 0.1 to 0.05 m3/h, the removal yields of BT-UVs could achieve more than 95% (P = 150 W) and 99% (P = 250 W), respectively. This work provides a new interdisciplinary insight for investigating organic contaminant removal in potential industrial applications of UV/H2O2 systems.

4.
Environ Sci Pollut Res Int ; 30(17): 49150-49161, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773265

RESUMO

Benzotriazoles (BTs) are highly produced chemicals that are commonly used in the manufacture of aircraft de-icing/antifreeze fluids (ADAFs), coolants, etc. BTs have been detected in a variety of water environments, causing health hazards to aquatic species and humans. In this study, 1H-benzotriazole (BTri) and 4-methyl-1H-benzotriazole (4-TTri) were selected to investigate their degradation mechanisms in the aqueous phase initiated by ·OH using a theoretical calculation method. Addition reactions are the main type of reactions of ·OH with BTri and 4-TTri. The total rate constants for the reactions of BTri and 4-TTri with ·OH at 298 K are 8.26 × 109 M-1 s-1 and 1.81 × 1010 M-1 s-1, respectively. The reaction rate constants increase as the temperature rises, indicating that rising temperatures promote the degradation of BTri and 4-TTri. 7-hydroxy-1H-benzotriazole (1-P1) and 4-hydroxy-benzotriazoles (1-P2) produced via multiple reaction pathways are important transformation products of BTri. After successive reactions with ·OH, 1-P1 and 1-P2 can be successively converted to 4,7-dihydroxy-1H-benzotriazole (1-P7), 4,7-dione-1H-benzotriazole (1-P8), and 1,2,3-triazole-4,5-dicarboxylic acid (1-P9), which is consistent with the product compositions detected in the experiments. The toxicity assessment indicated that the acute toxicity and chronic toxicity of the resulting transformation products are significantly reduced compared to BTri as the degradation process progressed, and ultimately showed no harm to all three aquatic organisms (fish, daphnia, and green algae). Hence, advanced oxidation processes (AOPs) can not only effectively remove BTs from water, but also reduce their toxic effects on aquatic organisms.


Assuntos
Poluentes Químicos da Água , Humanos , Animais , Poluentes Químicos da Água/análise , Oxirredução , Triazóis/análise , Organismos Aquáticos/metabolismo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...